Hot Spots: Methods for Detection and Analysis

Thomas Tarter August 9, 2011 Thermal Design Center

3287 Kifer Road Santa Clara, CA 95051 +1-800-218-1573 +1-408-969-2388 www.pkgscience.com

Outline

- Hot Spots
- Detection
- Package Defects: Void Formation
- Detection
 - Non–destructive Methods
 - Heating Curve
 - Destructive Methods
- Summary
- ► Q&A

Hot Spots

- Localized areas with a higher temperature than the surrounding area
- Can be caused by several phenomena
 - Short or near short circuit
 - On-chip circuitry with concentrated power dissipation
 - Voids in materials that aid in heat transfer away from the power dissipating element
 - Die attach
 - Mold compound
 - TIM 0
 - Underfill

Surface Hot Spot Detection

- Hot spots on chip surfaces
 - Temperature and stress gradients
 - Overtemperature condition
 - Material failures
 - Thermal runaway
 - Signal and power integrity problems
- Detection methods
 - Infrared

Science Services LLC

- Thermoreflectance
- Emission microscopy
- Liquid crystal

Infrared Thermography

- IR cameras used for thermography
 - Typically fall in the long-wave IR category
 - ~10um wavelength
 - Use a micro-bolometer focal plane array to gather information on the radiosity of an object
 - This information is in turn 'colored' to produce temperature information
- All objects emit radiation as a function of temperature
 - Emissivity

e Science Services I I C

Reflection and transmission

Infrared Thermography

- Measurement of radiosity
 - Infrared radiation emitted by a body
 - Emitted, reflected and transmitted infrared energy
 - Conservation of energy

 $\epsilon + \rho + \tau = 1$

- ϵ = emissivity, ρ = reflectivity, τ = transmissivity
- $\circ~$ For opaque targets, $\tau=0$

cience Services I I C

 $\epsilon + \rho = 1$

- Emissivity is inversely proportional to reflectivity
- Sample is prepared to have as high emissivity as possible
 - Flat black paint, talc, etc. used to lower surface reflectivity

Thermoreflectance

- Thermoreflectance depends on the fact that the optical reflectance of most materials depends slightly on temperature
- Test materials or devices are illuminated by an external light source, and the reflected light is imaged onto a camera
- The resulting reflectivity map is used to extract a spatially resolved image of the thermal distribution
- Requires lock-in software to extract accurate data
- Resolution of 250nm
- Temperature resolution of 10mK

Thermoreflectance Images

Package Science Services LLC

Emission Microscopy

- Although this method does not report a temperature, it can be used to find hot spots
- Works by counting electrons emitted
- Must be performed in a dark environment
- Sensitive to shorts, high current areas, ESD damage, leakage current and other defects
- Slow and cumbersome, typically used for defect location on integrated circuit wafers

cience Services I LC

Void Formation in Materials

- Die attach
 - Thin bond lines are more problematic
 - Causes
 - Flatness, cleanliness, chip backside metallization, impurities
- Overmold
 - Voids within material or at material to chip interface
 - Causes
 - Contamination, cleanliness, moisture, process conditions

Void Formation in Materials

- Thermal Interface Materials
 - Liquid or paste formulations
 - Causes
 - Pump-out

- Voids can propagate due to CTE of dissimilar materials
- Contamination, dry out, flatness, shock or vibration
- Underfill
 - Less of an effect on thermal due to typically low thermal conductivity compared to bumps
 - Causes
 - Contamination, material properties, application process

Effect on Thermal Performance

- Materials in contact with chip
 - Provide a better path for heat transfer than air
 - Voids in materials at the chip surface
 - High heat flux / temperature gradients local to void
 - Voids within material
 - Decrease effective thermal conductivity
- Increase thermal resistance and maximum temperature of the device
- High stress/strain

ence Services I I (

 Nucleation site for water, contaminants, delamination, crack formation

Detection Methods

- Detection methods for internal package problems include non-destructive and destructive processes
- Voids are typically very small and must use some form of magnification to detect
- Two primary non-destructive methods
 - X-ray
 - Scanning Acoustic Microscopy
 - Heating curve analysis
 - Laser Flash

Non–Destructive Detection

► X-ray

e Science Services I I (

- High magnification x-ray units can be used to detect and analyze voids
 - Voids may be detected visually
 - Multi-axis sample fixtures aid in inspection
- Acoustic Microscopy
 - C-SAM and other names
 - Acoustic wave impinged on sample
 - Typically immersed in water
 - Reflection and transmission properties measured
 - Uses time-of-flight to calculate density changes in materials or composites

C-SAM Image and Response

Non–Destructive Detection

- Heating Curve
 - Change in temperature as a function of time
 - Time delay for materials in the heat path depends on:
 - Material properties
 - Volume
 - Contact resistance
 - Compare results to find defects
 - Applicable for production line use

Heating Curve

Package Science Services LLC

Courtesy Thermal Engineering Associates, Inc.

Non–Destructive Detection

Laser Flash

- Laser or xenon lamp flash on surface
- IR measurements on the opposite side of the sample
- Provides thermal properties
 - Thermal impedance
 - Thermal conductivity
- May detect voiding or other defects by comparing to known good sample

Destructive Detection

Cross-section

- Used when a suspect is located to further investigate the defect
- X-ray or C-SAM location
- Cut and fine polished to defect location
- Material separation
 - Large voids can be detected using mechanical test
 - Instron[™] or other equipment can be used to test bond strength
 - Inspect failed interfaces for void formation

Package Science Services LLC

Summary

- Hot spots can be caused by
 - Circuit defects
 - Crowded chip design
 - Voids or delamination in materials contacting the chip
- Can be detected by various means
 - Measurement on chip surface
 - Void detection, destructive, non-destructive
- Methods can help to find and analyze hot spots

Questions?

THANK YOU

